MATH 320 Unit 2 Exercises
Introduction to Rings

A ring is a set R with addition and multiplication, satisfying, for all a,b,c € R:

(closure) a +b € R and ab € R

(associativity) (a +b) + ¢ =a+ (b+ ¢) and (ab)c = a(bc)

(commutativity of +) a+b=b+a

(existence of 0) There is Og € R such that a + 0z =0g+a=a

(inverses of +) There is some = € R with a + 2 = 0g. We write z = (—a).

(distributivity) a(b+ ¢) = ab + ac and (a + b)c = ac + be

Optional: (existence of 1 “Ring with identity”) There is some 1g € R such that
alg =1ga=a

Optional: (commutativity of x “Commutative ring”) ab = ba

Let R be a ring. Given a,b € R, we say that a divides b, writing a|b, if there is some ¢ € R
with ac = b; we call a a divisor of b. If r;s,t € R, we say that r is a common divisor of s,t
if r|s and r|t.

We call a € R a unit if there is some x € R with ax = xa = 15 (1g must exist). We write
x=a!. Wecall a € R a zero divisor if a # Or and there is some nonzero x € R with

ar = 0g or za = Og.

Let R be aring and S C R. We call S a subring of R if it is closed under addition and mul-
tiplication, contains Og, and for every a € S the solution of a+xz = Og isin S (not just in R).

A commutative ring R is an integral domain if it has identity 1z and there are no zero divisors.
A nontrivial* commutative integral domain R is a field if every nonzero a € R is a unit.

For any ring R, we define R[z] = {ag + a1z + - - + a,2™ : a; € R,n > 0}, where z is a new
element, that was not in R, which commutes with each element of R. We call n the degree®
of the polynomial, writing deg(f) or deg(f(z)), and a, the leading coefficient, provided
a, # Or. R[] is called the polynomial ring with coefficients from R. Two polynomials are
equal if their degrees are equal and all coefficients are equal. We call the polynomial monic
if its leading coefficient a,, = 1.

Degree Sum Theorem: Let R be an integral domain, and f(z), g(x) nonzero polynomials in
Rlz]. Then deg(f(z)g(x)) = deg(f(x)) + deg(g(x)).

®A ring R is trivial if R = {Og}, i.e. |R| = 1.
0 has no degree, while all other elements of R have degree 0.
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For Sep. 23:

For problems 1 and 2: Fix n € Z with n > 2. We work in Z,,.

. Let a,b,c € Z. Suppose that [a] = [b]. Prove that [a + ¢] = [b+ ¢] and [ac] = [bc].

For [a],[b] € Z,, we define addition and multiplication via [a] ® [b] = [a + b] and
l[a] ® [b] = [ab]. Prove that this is a commutative ring with identity, by verifying all
the axioms.

. Write out the addition and multiplication tables for Zs, using the names [0], [1], [2], [3], [4]

for the equivalence classes.

. Solve 22 + x = [0] in Zs, then solve 22 + z = [0] in Z.
For Sep. 25:

. Let R = 7Z and define new operations via a @b =a+b—1and a ©b = a + b — ab.

Prove that this is a commutative ring with identity.

Let R be a ring, and let a € R be a unit. Prove that we may cancel a from the left,
i.e. if ab = ac then b = ¢. [We may also cancel a from the right; no need to produce
the very similar proof.] Also, prove that a (still a unit) is not a zero divisor.

Prove that —a is unique, i.e. if a + = = 0gr = a + 2/, then x = 2’. Also, prove that if a
is a unit, then a~! is unique, i.e. if ax = ra = 1 = a2’ = 2’a, then v = 2’

Set S = Z[v2] = {a+bv/2:a,b € Z}. Prove that this is a subring of R.

For Sep. 30:

Let R be a ring with identity. Suppose a,b € R are both units. Prove that ab is a unit.

Let R = {(_‘Zb Z) ca,b e ]R}, 2 x 2 matrices of a special type. Prove that this is a
commutative ring with identity, using the usual matrix addition and multiplication as
operations.

Let R,S be rings. We define addition and multiplication on the Cartesian product
Rx Svia (r,s)®(r',s') = (r+1,s+s") and (r,s)© (1", s") = (r1’, ss'), where r+7’ and
rr’ are using the operations in R and s + s’, ss’ are using the operations in S. Prove
that this forms a ring.

Determine which of Zs, Zg, the ring from exercise 5, the ring from exercise 8, and the
ring from exercise 10, are integral domains or fields.
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For Oct. 2:

Prove the Degree Sum Theorem. Then, demonstrate with an example that its conclu-
sion does not hold for R = Zsg.

Let R be an integral domain, and let f(x) € R[z]. Prove that f(x) is a unit in R[x] if
and only if f(z) = ay (i.e. deg(f(z)) =0), where ag is some unit of R.

Let R be a ring, and let f(x),g(x) € R[z]. Prove that deg(f(z)g(x)) < deg(f(x)) +
deg(g(x)) and deg(f(z) + g(x)) < max(deg(f(z)),deg(g(z))), whenever the degrees
exist (i.e. we avoid the zero polynomial).

Let R be a ring with identity. Prove that 1zx € R]z] is neither a unit nor a zero
divisor.

Extra:

Let p be prime. Prove that 22+ x = [0] in Z,, has exactly two solutions: [0] and [p—1].
Calculate (and simplify) ([a] @ [b])? in Zs.

Let R = My(R) = {(%%):a,b,c,d € R}, 2 x 2 matrices. Prove that this is a non-
commutative ring with identity, using the usual matrix addition and multiplication as
operations.

Find all the units in the ring from Exercise 19. Then find all the units the subring
S = Mo(Z) = {(24) : a,b,c.d € Z).

Prove that if R is a ring and S is a subring of R, then S is itself a ring.

Let R be a commutative ring and let b € R. Set T'= {rb: r € R}. Prove that T is a
subring of R.

Let R, S be rings with identity. Prove that R x S has an identity, and determine the
units in the ring R x S.

Find a ring R and a polynomial f(z) € R[z] where f(x) is a unit and deg(f(z)) > 1.
Compare with Exercise 14.



